【大学频道】中国科大数学科学学院呈献 | Albert Chau of UBC
更多精彩视频登陆网站www.koushare.com
题 目:紧KAHLER流形与完备非紧KAHLER上的KAHLER-RICCI流的基本理论与技巧 (Lecture 1-11)报告人:Albert Chau单 位:University of British Columbia时 间:2007-07-11地 点:中国科学技术大学
扫码观看精彩报告视频
报告摘要
Introduced in 1982 by Richard Hamilton, the Ricci flow is one of the most important equations in differential geometry. It is ageometric evolution equation providing a powerful analytic tool used to deform a Riemannian metric on a Riemannian manifold.The Ricci flow has found fundamental application in topology, Riemannian geometry and complex/Kahler geometry. In this talkI will discuss the Kahler–Ricci flow on complete non-compact Kahler manifolds. I will then discuss the application of the Kahler–Ricci flow to the uniformization of complete non-compact Kahler manifolds and to Yau’s uniformization conjecture. Yau’s conjecture states: a complete non-compact Kahler manifold with positive holomorphic bisectional curvature is biholomorphicto complex Euclidean space.
个人简介
Albert Chau is a professor at University of British Columbia. He got his Master of Mathematics Science and Doctor of Mathematics, Philosophy. His research instersts includ: differential geometry and partial differential equations.
.
●【大学频道】中国科大数学科学学院呈献 | Ben Weinkove of Northwestern University: 复几何学中的CALABI-YAU定理
●【大学频道】中国科大数学科学学院呈献 | 印第安纳大学-普渡大学印第安纳波利斯分校沈忠民教授:Non-linear Spectra of Metric Measure Manifolds
●【大学频道】中国科大数学科学学院呈献 | 加州大学圣克鲁斯分校庆杰教授:黎曼流形的收敛性
●【大学频道】中国科大物理系呈献 | 陈航晖教授:Emergent phenomena in transiton metal oxides
●【大学频道】山西大学理论物理研究所呈献 | 北京理工大学邢燕霞教授:3D磁拓扑绝缘体中的量子反常霍尔效应
●【大学频道】北京大学高能物理研究中心 | 南安普顿大学Chris Sachrajda教授:Lattice Flavour Physics: Lecture 1
●【大学频道】中国科大赵九章·侯德封大师讲堂 | 南方科技大学郑焰教授:Fixing Arsenic, One Well at a Time
为满足更多科研工作者的需求,蔻享学术推出了蔻享APP以及相应的微信公众号,并开通了各科研领域的微信交流群。
蔻享APP
蔻享学术公众号
进群请添加微信:18256943123
小编拉您入群哟!